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PROGRESS REPORT
RESEARCH GRANT NAG-1-1424
ODU RESEARCH FOUNDATION GRANT NUMBER 126611

THEORETICAL STUDIES OF A MOLECULAR BEAM GENERATOR

MOLECULAR BEAM GENERATOR MODEL

The following is a proposed baseline model that is being develope for the simulation of
hydrodynamic generator, which can be converted at a later date to a magnetohydrodynamic
MHD thruster by adding the necessary electric and magnetic fields. The following development
will include the electric and magnetic terms, however, the initial computer program will not
include these terms. The analysis that follows is for a one species, single temperature model

constructed over the domain D defined by the region enclosed by ABCDEF illustrated in the
figure 1. -

Porous
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Figure 1. Geometry of thruster MHD model.

CONTINUITY EQUATION

The continuity equation expresses conservation of mass and is given by

% 19 (o) =0 @



where p = p(r,0,2,t) is the density of the gas, and V = V. é, + Vyég + Vz €, is the velocity. In
cylindrical coordinates the equation (1) has the form
p 19(rpVr) 13(pVp) | 9(pV2)

ot r Or r 00 t 0z =0 (2)

CONSERVATION OF MOMENTUM

The equation for conservation of linear momentum is given by
af/‘ = — n —
PE"*'P(V'V)V:ZR' (3)
1=1
where Y iy F represents a summation of body forces per unit volume acting upon a control

volume within the domain D. We consider initially the pressure force

Fi=-VP | (4)
where pressure and density are related by the equation of state gas law P = p*RT, where p* is
the density in mole/m?. i.e. p*W = p where W is the molecular weight in kg/mole. The force

due to viscosity is

Fy =y {VV+V(V-T)} - %vmv )+ 2V VWV + Vi x (Y x V) (5)
where 5 (MmkgT\Y? (2kpT\?
= 1.2510"198niA ( 7 ) ( 2 ) = T%/? (6)
is the plasma viscosify, with ,
A = 2(log(1 + a?) - ] _C:a2

a constant which depends upon the ionization factor a, (a = 1 for a fully ionized gas). The
additional constants are M the ion mass (Kg), m the electron mass, € the electron charge, kp
Boltzmann’s constant, T is the absolute temperature, and n; = 1 for a singly ionized plasma.
For a = 0, we employ an empirical curve fit for the viscosity as a function of temperature. The

magnetic force is given by

Fy=JxB (7)



where J is the current density. The gravitational force is given by

The electric force is given by

All additional forces are represented by

i
-]
".1

and are neglected for the present.

CONSERVATION OF ENERGY

Representing the internal energy by u = CpT where Cp is the specific heat at constant pressure
and T is the absolute temperature, the energy equation can be written in the form of an energy

balance as "

o(C,T ~

P2 4 o7 VXGyT) = VKLIT) + 3 b ®)

i=1
where both the specific heat Cp and thermal conductivity Kg are treated as functions of
temperature 7. The thermal conductivity K7 of the medium is given by the Spitzer-Harris

relation

4.410~10 75/2

23 — log [L2Z1E 0 |

Kr = (9)

and n is the plasma number density in particles/ m3. In addition to the heat loss term the right

hand side of equation (8) contains the terms
¢ =(E+VxB)-J—nV-E (10)
which represents joule heating,
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which represents viscous dissipation. Here n and X are viscosity coefficients satisfying A+ :_2;17 =0.
In addition there is the radiation loss term. Various forms of the radiation term exists in the
literature. As a first approximatrion we take the radiation loss term from reference 11 which can

be expressed

b= VARV (50T")

where Ag is the Rosseland mean free path (A\gp = 1/ag where ap is the Rosseland absorption
coefficient (cm™1)), and o is the Stephan Boltzman constant. The remaining terms Yoy i

represents additional energy considerations which are initially neglected.
MAXWELL’S EQUATIONS

Maxwell’s equations in the MKS Rational system of units can be expressed

Gauss’s law for magnetism V- B=0 (12)

Gauss’s law for electricty (Coulomb’s law) V-D=pe (13)
Ampere’s law VxH=J+ %? (14)

Faraday’s law VxE= —%t—q (15)

CONSTITUTIVE EQUATIONS

Assuming an isotropic, homogeneous medium we adopt the constitutive equations
D=¢E and B= ,u H.
OHM’S LAW

Ohm'’s law is written in the form

- - — Q - =
F=o(E+V xB)-5(JxB) (16)

where J is the current density, E is the electric field, B is the induced magnetic field and o 1s

the electric conductivity with units of mho/m and § is the Hall parameter given by (reference 1)

Q = 9.6(10'6)(T%2B/Zn log A)



with Coulomb logarithm given by
log A ~ 23 — log(1.22 x 10° n'/2/T%/%)
with n the plasma number density.

ELECTROMAGNETIC FIELD EQUATIONS

Neglecting the displacement current modifies Ampere’s law to
V x B=ul. 1amn

Assumming that the charge density is constant implies the equation of continuity of charge
is V. J = 0. (Note that the divergence of equation (17) also gives this result.) From Jackson,
reference 10, along with neglecting the displacement current, it is appropriate to ignor Coulomb’s

law as its effects are negligible. We thus obtain the electromagnetic field equations

Vxﬁzuf

. 7] (18)
VxE:—QE
ot

Using equation (17) in Ohm’s law we solve for E and write
E:anﬁ—Vx§+ﬂ(Vx§)x§ (19)

where 8 = Q/uBo and a = 1/opu. We substitute the results from equation (19) into Faraday’s

law and write

28—V x(aVx B) - Vx (7 x B)+ V x BV x B) x B (20)

and since 8 is a function of T we find

-—%?—=Vx(aV><]§)—Vx(l7x§)+Vﬂx(Vx§)x§+ﬁVx(Vx§)x§ (21)



SUMMARY OF BASIC EQUATIONS USED FOR MODELING

Continuity
dp
'a—t + V(pV) =
Momentum
av 5 g
Pt p(V- V)W =) F
i=1
Energy

P2 4 o7 VNGpT) = VKTVT) + 3 b

i=1
Electromagnetic field equations

B - L Lo
—%—:Vx(anB)—-Vx(VxB)+Vxﬂ(VxB)xB
This produces a system of eight simultaneous partial differential equations in the eight

unknowns

BraBG,BZ)pa V?‘vV97VZ,T'

Throughout the calculations the following quantities can be generated in terms of the above

variables.

J=
1z (22)
o

SCALAR FORM OF FIELD EQUATIONS

Assuming symmetry with respect to the @ variable, all derivatives with respect to 6 are
neglected. The following set of scalar equations then results

Continuity

o . 19(rpVr) | 0(pVz)

o r Or 0z =0




Momentum

oV, oy ovr V# ~ &
+p (Vr +V; - i) = Z(F')r

P ot ar 8z
6V9 BVg an VrVg
8V 6Vz BVZ

Energy
dCp\ 8 0Cp\ 0T 0Cy\ 0T
p(Cp+T )—-—+ V(CP+T‘6—T‘)—+PVZ(CP+T3T)3Z

oT | ot 0
82T 18T 8T
)+KT[5ﬁ+r6r ]+Z¢l

6KT (8—T 2+ a—T 2
oT or 0z



Electromagnetic field equations

OB, 8’B,  9’B, OB, oV, 0B, )7
ot 952 +a3r62 +Vz_6_z—+Br 0z —V 0z - B: 0z

8’By OB, 8By 2By 10Bg\ 8B, (0B Bg)}
‘ﬂ[B’ 52 T 5: 02 +B’(araz+F 6z)+ 5z (31‘ T

ag 0By 0By By
T 5 [Bz‘éz—+3f (W“L )]

8By  0*By 3°By 0By
—Sp = ey —agy T4 tabi Ve~ B
B
0z 0z

+8|B 0’Br 9B, N 0B, (0B. 0B;\ 2By 0By
2\ 922 oroz 0z 0z or r Oz

9’B, 0°B, dB, (0B, 0B, 88 [ OBy 8B, 0B,
+Br(8r62_ or? )+ or (62 ©or )]+—[B9_(32—+Br (—— )]

or -
+5§[B’(az_ 8r>—B0(3r +—>]

oz or
-

0B, _ 9*B, 9°B. L @9Br _adB:

ot~ “Broz *or2 r 0z r Or
OB aV, 1

+ Vr arz + Bz arr + ;'_ (VrBz - VzBr)

3’By; 0B, 0By 0°By 20By OB, (0By = By B, 0By
+ﬂ[323raz + or 0z +B,-( or? +; or )+ or ( or +T> +_7_'—_67]

op 0By 0By By
+-6—r [Bz—a‘z—-l'-Br (—6-7"—-’:-7

0B, ov,
“Vege ~ B

These equations are subject to certain boundary and initial conditions which are now
discussed.

BOUNDARY AND INITIAL CONDITIONS
With reference to the figure 1, the line AF has the input conditions

p = po = constant

T = Ty = constant
Vr = Vo == 0

V, = Vp = constant
0B, 0By 0B,

8z 0z 0Oz




Due to symmetry considerations the line AB has the center line boundary conditions

a0 o =0
6;:, =0 aalio =0
}% =0 aaBr =0
o ="

The far field conditions along the line BC are given by
5z 0 5 ="
'a% =0 5 =0

For the insulated boundary segment between ED we assign the boundary conditions

Vi=Vg=V,=0 no slip boundary condition

T = Ty = constant
dp
or

B,=By=B;=0

=0

For the uninsulated boundary segments FE and DC we assign the conditions

Vei=Vg=V,=0 no slip boundary condition

T = Ty = constant

% _
or

Jg = Owhich implies Q%- = 9B. and simultaneously
0z or

O(rBg) _ 0By
or 0 and 8z 0




These later boundary conditions upon B insures that the electric field E satisfies the condition

-

E -1 = 0 everywhere on the nozzle boundary, where { represents a unit tangent vector to an
arbitrary point on the nozzle boundary.

Initial conditions are assigned in order to avoid large initial transients in the numerical solution
because large changes can lead to numerical instabilities of the system of partial differential
equations. We therefore assign the following initial conditions at all interior grid points.

T = Ty = constant
Vi=Ve=0
V, = Vp = constant

B,,Bgand B, are assigned values such that V-B =0

everywhere in the solution domain.
TRANSFORMATION OF COORDINATES

We make the change of variables

z

Ty YT

so that the domain of the nozzle 0 < r < f(z), 0 < z < b transforms to the computation domain

0<z<1and0 <y <1. The scalar form of the governing equations can then be written in the
following forms.

Continuity

o 1 8pVe) | pVr +10(sz)_yf’(Z)3(sz):
ot f(z) 0y yf(z) b Oz f(z) Oy

Momentum Equations

av,. V, 8V, 10V,  yf'(z) aV,) %4 1 &
+ Vz (_ - -
yf(z) ;

T 702) By bor  f(z) Oy
oVy Vr 0Vp l@Vg yf'(2) 3V9) VrVg _ -
7(2) By V"’(b 3~ f(z) Oy Z(F“
av, V., V. 10V yf'(2) Ve
3t T () By (3 5z~ 1) ) Z(F ):

10 10



Energy Equation

e (0 (1))

1 82T ny/(z) 8T f”(:l:) f'(z) aT

K (b_2 oz2  bf(z) Ozdy [y ( f(z) _2(f(g;)) )] By
(fOYOT, 1o, 1 OT) <
i (f(z>) 5 Ty oy | (@) ay2) 2

Electromagnetic Field Equations

ér-component

0B, _ _1_62b,- 2y f'(z) 8%Br (yf'(z) 2 2B,
at = *)2 o2 bf(2) 31:6y+ f(z)) Oy?

(55 -(5) %))

{55t e o a;;i}

o (2 1
() (-5

o{o (35 R[5 -+ (5)
(1 8B, yf'(z2) BBz) (1 0By yf’(z)ab,,)

dBg
dy
b0z f(z) Oy J\bOr f(2) Oy

_f'(z) 8By , 1 9°By _yf'(2) 6*By 1 (19By yf'(z) 9By
+Br( f2(z) 0y ' bf(z)0z0y  f(z) 8Y* T VE) (b 9z f(z) Oy >)

i (%af - y;(()) 6612) (f(12) aa? * yf(g ))}

o (V- 490 (o (5 5 )+ (T + 7))

11



ég-component

0By _ (_1_3230 _ 2yf'(2) 8By (yf'(z))23230
= =\ 3232 " bfe) owoy |\ fl2) ) Oy

"(z "2)\?| 8B 1 0%B 1 0B B
[f() 2(f()>] 0 0o a+y2f2a(z))

(2) f(2) dy  fiz) By?  yfi(z) Oy
10B: yf'(2) 6Bz \ _ 19V yf'(z) 0Vy 10By yf'(z) 0By
‘V"(b 8z f(2) ay) B’(b - f(z) 6y>+V’(b oz f(2) ay>
18V, uf'(z) 9Vs V, 0By _ By 8V, Vy 8B, B 0Vp
+B”(b 8z~ f(2) ay)+f(2) 3 T F) oy f2) dy  f(z) Oy
18°B, _2yf'(2) ®Br _ yf'(2) 20°B. ') ({2 2] 6B,
g {B" [bz 57 b 2ady 1)) O ”{f'm 2(75) ] 5y
+f’(z) 0B, _ 1 32Bz _ yfl(z) 62Bz]
F2(z) By  bf(2)0zdy  f(z) Oy
(laBz B yf'(2) 332) (laB,. _ yf'(z)0B, 1 BBZ)
b oz f(z) 9y J\b oz  f(z) 9y f(z) Oy
_ 2By (1339 _yf'(®) 339)
yf(z) \b Oz f(z) Oy
4B (_ f'(z) 0B, 1 9B, yf'(2) 0’B, 1 62BZ>
"\TTF2() 0y " bf(z)028y  f3(z) 9y?  f2) y?
1 0B,\ (10B, yf'(:)8B, __1 9B;
+(f() )(b o~ f) 9y 1@ ay>}
ﬂ'(T) oT 10Bg yf'(z) OBy [EBBT B yf'(z)0B, 1 0B,
7) ay( Bo [b oz " 1) ay} Brltae ~ 7t oy F@ ay])

o (0% [ (7% %)

-5 (5% 570

12

12



e,-component

9B; _ ( f'(2) 8B, 1 8B, yf'(z)8*B,
ot “\"f(z) 0y " bf(2)0xdy  fz) Oy?
1 B, 1 [18B, _yf'(0B;] 1 6Bz>
f2(z) Oy? AT [b oz f(2) ay] yfi(z) 9y
B V, OB, B B, 0V, + V., 0B, + B, oV, B V. B, + V,B,
f(z) 8y f(z) 8y ' f(z) 8y  f(2) 8y yf(z) wf(2)
f'(z) 8By 1 82By yf'(z) 0*By
ro{e (-BE5E+ o )
+ 1 0B, (}_aBg _yf’(z)@Bg)
f(z) 0y \b 9z  f(z) 9Oy
+ B, 62Bg+ B, 639+ 1 aB,( 1 6Bg+ Bg)
F2(z) 8y? " yfi(z) 8y ' f(2) 9y \f(z) 8y  yf(2)
+ B, (laBg _yf'(z) 8B9) B, 339}
yf(z) \b 0z f(z) 8y yfi(z) Oy ,
ﬂ’(T)aT 1639 yf’(z)aBg 1 aBg Bg
@) oy [Bz (3 dr  f(z) 8y ) B (f(Z) By T yf(Z))]

NUMERICAL SOLUTION

We are primarily interested in the steady state solutions and the time necessary to achieve
steady state. The above system of coupled nonlinear partial differential equations are simplified
by assuming symmetry with respect to the 6 variable. This enables us to set all derivatives
with respect to 8 equal to zero. Additional assumptions regarding magnitudes of force terms and
energy terms can be made by doing a dimensional analysis of the resulting system of equations. A
grid generation technique is used to alter the solution domain to a rectangle. Then the equations
and rectangular boundary can be scaled before any numerical solution techniques are applied.
The system of equations are then solved numerically using ADI (Alternating Direct Implicit)
techniques patterned after the Lax modification.

GRID GENERATION

Let » = f(z) denote the nozzle boundary for 0 < z < b and consider the mapping from

the (r, z) real coordinates to the (z,y) computational coordinates given by the transformation

equations

(23)

13



where rmaz = f(z) denotes the nozzle boundary which changes with position. This mapping
converts the region
D={rz]0<z<b, 0<r<Tmaz}

to the region D' of computational coordinates given by
D' ={z,y]0<z <1, 0<y<1}.

To handle large gradients in any of the independent variables, the computational z,y domain is

partitioned into 6 regions as illustrated in the figure 2.

Figure 2. Computational coordinates

The 6 regions are characterized by the selection of the Az and Ay step sizes. In this way finer
grids can be specified near the boundaries and nozzle regions where large gradients can occur.
Observe that any partial differential equation of the form
Ou d%u d%u d?

u
En Dl(T,Z)(—ar—g + D2(T,Z)578—z + DS(T,Z)‘B—; + Dy(r, 2)

Ou

Ou
-+ Ds(n2)ge + D (24)

14
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where u = u(r,z,t) and Dg = Dg(r, z,t,u,...) can be converted to computational coordinates

z,y by using the chain rule for partial derivatives. These changes can be represented

Ou Ouldzr  Ouby
o~ dzar  oyor
Ou Oulz  Oudy
5:  020: ' Oyo:
and
9%y  0ud?r Oz [0*udr O%u Oy
a?%?ﬁ*ﬂa—ﬁs:*a—xa—yé:]
ou 8%y Oy [ 0%u 9z  O%u ay]
t ot o |t a A
dy Or2 ' Or |Oydz Or = Oy? Or
62u oud?c Oz [0%udz 0%u By
02 05022 | oz [a—fa— ﬂ;a_}
Oudly Oy[ 6% Oz 0%u By
5y 0.2 " oz [ma i a—yza—z]
o2%u _Ou 92z Oz [f%udz  O%u Oy
5rd: 0z 0rdz | or [5—23—+‘67ya—]
du 9%y Oy [ 8%y 8z  0%u 8y]

+

By Ord: r | Oydz Bz + 5@75_2.
Then the partial differential equation (24) can then be written in the z,y computational
coordinates
ou ou 8%u 2 9%u du 9%y &%y 2
= _D = z = gy —— haiid
ot 1 [6 Trr + axz(xr) + axayzryr + 6yyr + axayyrxr + 8y2 (yr) ]
+D [ Ou + a2u _(93“_ + QE + £2_u_ + ?_E
2 La “—ZTrz 3z 2$rxz axayxryz ayyrz axayyrxz ayyryz
[ Ou v, o O%u du 0*u Pu, 9
+ D3 -'5;-7322 + -a—zg(mz) + ﬁmzyz + ggyzz + Myzmz + %f(yz) ]
[ Ou du Ou Ou
+ Dy -55151' + ‘a—yyr] + Ds [6 T, + 8_yyz] + Dg
or
Ou 0%u 9y &%u L Ou L Ou

E—-Dla2 D266 +D3a2+D4a +D58 +D6 (25)

15



where

D! = Di(z,y) = Di(+)? + Daz,z; + Ds(zz)°
D} = Di(z,y) = 2D1zryr + D2(zry: + yrz2) +2D322Y:
D} = Dy(yr)? + Dayryz + D3y}
D} = D}(z,y) = Dizsr + Dazr; + D3z2z + Dyzr + D522
D% = D%(z,y) = Diyrr + Dayrz + D3yzz + Dsyr + Dsy:
D} = D§(z,y) = De(yf(z),z,t,u,...)

and D; = D;(r,2z) = Dij(yf(z),z) fori=1,...,5 and

vz =—yf(2)/f(2)

| =

Iy = 01 Yr = 1/f(2), I, =

e p = A F(aT _ (e, (f@Y
mrr—l'rz—xzz—yrr—o, Yrz = f()/(f( ))a Yzz = y<f(z) Q(f(z)))

Then the above coefficients reduce to

* 3
Dl(xay) = _bz_

. . Dy 7(2)
Dilev) = 5y ~2P45G)
. D () f(2)\*
Di(ew) = Gy ~ VP Y D (f(Z))
Ds
DZ(:L‘,y)=———
\ £(2) 1) L (F @\, D o f'(2)
Di(@ ) = =Daryyy —vbs (f() 2<f(2)) >+f(2) Y55

Dg(x,y) = Dﬁ(yf(z)’xv sUye s )

where

D; = Di(r,z) = Di(yf(z),z), for 1=1,2,3,4,5.

ADI NUMERICAL METHOD

The following description of the ADI numerical method is for uniform Az and Ay grids and
of course has to be modified for unequal z and y spacing. In step 1 of the ADI numerical method
the interior points to the region D’ of the computational domain are labeled from left to right as
illustrated in the figure 3. Assume that the system of partial differential equations to be solved

16 16



have all been normalized. Partition the segment from z = 0 to z = 1 into segments with spacing
Az = 1/mgy so that the ith node is iAz and the right boundary is maAz, with 0 < ¢ < ms.
Similarly, partition the segment from y =0toy =1 into segments with spacing Ay = 1/m; so
that the jth node is jAy and the top boundary is mjAy with 0 < j < m1, where i,j,m and
mo are integers. The interior points to this grid are then labeled as illustrated in the figure 3.

Let u,, be associated with the (z,3)th node point, where
n=(mg—1)(m;—1-j)+1 my and my are fixed.

Conversely, given the up point, we can determine its position i, j from the relations

i =m —1-Int(n —1)/(mz —1)]

i=n—(mg—1)(m —1-7)

where Int[z] is the integer part of z.

ug u2 u3 ug v Umg—1
Umy Umy+1l Uma+2 Umap43 - U2my—2

U(mz—-1)(m1-1)

Figure 3. Step 1 labeling of interior points to domain D

17



Letting
u(iAz, jAy,nAt) = ui;

and dropping the star notation, we then replace all partial differential equations of the form of
equation (31) by difference equations having the form

n+4-1 n n+l _ o, n+l n+1
Yiy “%i_p (“i+1,j 2ui s +“i—1,j)

At (Az)?

n n n . .
+D Ul 41 — Yig1,j—1 ~ Yic1 41 T U151
2 4AzAy

+1 +1
L p, (B T2 P | p v, ~ %o,
3 (Ay)? 4 2Az

ull. —um.
D i,j+1 i,j—1 D
+ Dsg ( 9y + Dsg

which can be rearranged to the form

( 2D1At) n+l (D]At D4At) oy (D4At DlAt) n+1

T Bz ) o2 T oz ) Vi T\ A T (an)E) i
_(1- 2D3At um D3At  DsAt um D3At B DsAt o
By? ) i T\ T 2oy ) T (A T 24y ) T
Dy At
t 1AzAy (w11 = i imn — i + ulyjo1) + Dot

Evaluating this equation at each of the interior node points gives rise to a system of
(mg — 1)(m1 — 1) implicit linear equations which are then solved by row reduction methods.

The second step of the ADI method relabels the interior points of the computational domain
from top to bottom as illustrated in the figure 4.

For this labeling we can let u, denote the point associated with the (z,7)th node where
n=(m —-1)(E-1)+m —J.

Conversely, given un we can solve for 7 and j from the relations

i =1+ Int[(n — 1)/(mq1 — 1)]
j=m-DE-1)+m—n

18
18



Ui Um,
u2 Umy+1
ug Umy +2
Uq Um,+3
Un
Um; -1 U2m,-2 t

i

Figure 4. Step 2 labeling of interior points to domain D’

For step 2, all the partial differential equations of the form of equation (31) are replaced by the

difference equations having the form

n+l_ n
Yij Ui

At

+ D,

(
(0
(0

= D :l+1).7 2u n +u?—1)j
Ax)2

TR+~ Yilj—1 " ?-1,j+1+“i—1,j—1>
4Az Ay
nj—:l ?;Ll‘*“njll D Ul T Yie1,
Ay)? i “( 2hz )
n+l _ n+1
,J+l Ui 1) + Dg

19



which can be rearranged to the form

(1 2D3At) ,,+1_(D3At D5At> ntl (D5At D3At) ntl

TayE ) T \@? T 28y ) W\ 28y "~ (ay)2) T
_ 2D{At\ , DAt D4At\ DAt D4At n
= (1 " A ) gt ((Aa:)2 t3a; )i Yt \(GeE T 2As ) MM
Dy At

+ 4Az Ay (“?+1,j+1 - u?'H,J'—l - u?—l,j+1 + ”?_1,_.,'_1) + DgAt

Applying this difference equation to each interior node point results in an implicit system of
(mj — 1)(mg — 1) simultaneous linear equations which must be solved for the values of u at the
node points.

One can see that the finer the interior grid there results a larger system of linear equations
to be solved. Also the results from the ADI numerical method are more accurate on the even
numbered time steps. Additional complications results when employing the unequal step size
approximations illustrated in the figure 5. The unequal step sizes are necessary to handle large
gradients occurring in any of the dependent variables. The computational region is therefore
divided into 6 regions as illustrated in the figure 5. The density of node points can be changed

in each region by selecting different step sizes in the computational coordinates.

Figure 5. Unequal z and y spacing.
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In the case of unequal grid spacing we employ the difference approximations.

Ou Az
_==1 - A _
o~ s (A2 e+ )~ st ) - o (ol — Be2w) e 9)|
Ou _ Ay ]
A _ Oz, y — Aya) — u(z,
5 Ayl +Ay2 [ (u(a:,y-i- y1) — u(z,y)) Ay2(u(a; Yy ya) — u(z,y))
&*u I+Am1,y)—u(x y) U(VC-Amz,y)—u(x,y))]
oz? Ax1 + A:Cz Az Azo
0%u _ [U(w Y+ By1) —u(zy) | u(z,y — Ays) —U(m,y))]
dy? Ay + Ayz Ay Ays
0%y ~u(x+Ax1,y+Ay1)—u(:z:+Ax1,y—Ayg)
828y (Azy + Azz)(Ayr + Ayz)

u(z — Az, y — Ays) —u(z — Azg,y + Ayp)
(A:L'l + A.’L‘z)(Ayl + Ayg)

SPECIAL CASE-ELECTRIC FIELD IN VACUUM

In a vacuum we solve

¢ 10¢ 0%*¢
32+r3r+az

over the domain 0 < r < f(z) and 0 £ 2 < 1. Using the transformation equations

Vi = =0 (26)

c=z  r=yf(2)

where
f(z) = .2 4+ z tan(87/180)

is used to describe a straight line nozzle boundary. The equation (26) then transforms to

2 2 2
2%+ ala,v) e + M) ¢+c(my)a (27)

dz?

over the domain 0 < z < 1,0 <y <1 where

A C)
a(xvy) = —2y 7(2)

o= oy + (1)

ooy L '2) , (f@))
@)= p6) - (f(Z) 2(f(z)> >
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FIGURE 7
MAGNITUDE OF ELECTRIC FIELD IN VACUUM
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FIGURE @,
MAGNITUDE OF ELECTRIC FIELD IN VACUUM
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Using the notation u; j = u(iAz, jAy) and the difference approximations

Wil — Ui il

Ugpz ~ h2
u Wi+~ Uid],i-1 ~ Yi-1,541 + u;—1,5-1
ntd 4h?
Ui+l 2u; 5+ uij—1

and defining )
d(za y) = ﬁ(l + b(:z:,y))

the equation (26) reduces to the difference equation

a,_.,

J
+ 4h2

1 fuigy F Uil
u’)] - -d— h2

— (Uig1 341 — Wit1,j—1 = Binl j41 + Liz1,j-1)
LY .

U (s . b A O
71-2_ (ulaJ+1 + ul)J—l) + éﬁ (uz+1)J - ul_l,])}
This difference equation is subject to the boundary conditions

Uj = assigned potential value

WJmaz
u())j = u2’j
Uimaz,j = Yimaz—2,]
U0 = Ui2
which represent zero derivative boundary conditions along the other three sides. The figures 6,7,8

and 9 illustrate the potential function for two different nozzle configurations where the cathode

is assigned a value of —500 volts and the anode(s) is assigned a value of +500 volts.
FLOW AND HEAT TRANSFER THROUGH A POROUS MEDIA

In the figure 10 a porous material is heated with 40kw of power from a solar simulator. We
assume that the solid porous material is heated to a uniform temperature T and that a gas flows

through the porous material and is heated.

26
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Q rad cooling

Q conv

cooling

Figure 10. Heat transfer through porous material.
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In the following discussions we use the notations:

¢ = porosity 0 < ¢ <1
Ty, Ts = Temperature of gas and solid (K)
pg, ps = Density of gas and solid (gm/cm3)
K4, Ks = Thermal conductivity of gas and solid (cal/s em? K/em)
Ke=(1- ¢)K, + K4 = Effective thermal conductivity
u = Velocity of gas (cm/sec)
ag = Kg/Cpgpg = Thermal diffusivity of gas (cm?/sec)

L = Thickness of porous material (cm)
ulL
Qg

r = Radius of disk (cm)

Pe = = Peclet number (dimensionless)

h = Heat transfer coefficient (cal/scm?® K)
Qo = Input power (Kw)
A = Surface area of disk (cn?)
Cpg, Cps = Specific heat of gas and solid (cal/gmK)
Rs = Ratio of surface area to volume of porous media (em?/em3)
U = T,/T40 = Dimensionless temperature ratio

V = Ty4/T4o = Dimensionless temperature ratio

tu . . .
T = I = Dimensionless time

T ) ) ;
X = T = Dimensionless distance

Following reference 1, the basic equations describing the heat transfer to a gas moving through

a porous media are given by

oT oT, . 9T,
oT. R 0T,
pscpsws = Ixs—a—sz — hR(Ts — Ty) (29)
for0<z<Landt>0.
28
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The equations (1) and (2) are subject to the boundary conditions

oT. 239 Qo

and T
8
—K, -

= h(T; — Tw) (31)

r

where all terms have been scaled to the units of cal/s em? and
o = 5.67(10712)(.239) cal/s em?® K*

is the Stephan-Boltzman constant, € is the emissivity. In addition we have the boundary

conditions
pgCpg u %TZQL,:() = hR(Ts — Ty) (32)
%h:l, =0 and %Z;glz:L =0 | (33)
We further assume that the initial conditions are
Ts =Ty = Tyo. (34)

Introducing the dimensionless variables U, V, X, 7, the above equations can be written

oU 1 82U 1 U 1 9%U
o — o (;gm*@a#z‘zm)—%w‘” (35)
v v 1 9%V 1 8V 1 8%V
Ly oAl ——— =]~ -
ar "oz ™ <7~g or T ZROR T I? az?) Bulv-1) (36)
oU —hr
aRlR1 = U -1 (37)
where 12 X 0 0 0
4= - RsL 4y — KL .\ hR,L
Pe Pe K,y agpsCpsPe agpsCpsPe

The equations (35) and (36) are subject to the boundary conditions

oUu

5512___0 = A3 — Bs(U* =V —C3(U - V) (38)
1%

37720 = BslU = V) (%)
U v

6_Z‘Z=1 =0, ’6_Z‘|z=1 =0 (40)
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where

3 2
239Q(roR)L eoTooL Kg4Pe hR,L
A — —_— ___, B frt y C — y B —_ e—— 41
3 AK. Ty 3 K, 3 K. 4 ag Pe PgCpg (41)
The initial conditions are
U(0,t)=1 and V(0,t) =1 (42)

We divide the intervals 0 < Z < 1 and 0 < R < 1 into N parts with step sizes
AZ = AR = 1/N. We desire to represent the temperature of the gas and solid at the positions
R = iAR and Z = jAZ for the time 7 = nAr which is based upon the given temperatures
at time 7. Let U((AR,jAZ,nAT) = Uir,lj and V(iAR,jAZ,nAT) = i’,’j, and use difference
approximations to write the above equations as difference equations. We use the ADI (Alternating
Direction Implicit) method to solve the above system of coupled partial differential equations.

Material Properties

From reference 15, we obtained the following empirical data for Hafnium carbide.

Temperature | Thermal Conductivity of Hfc
deg K W/cm K
560 0.09
800 0.12
1100 0.13
2000 0.15
2500 0.25
3000 0.29

The best fit second degree polynomial to the above data is given by

K,(T) = 0361887 + 1.03093(10~*) T ~ 1.2077(107%) T*

30
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Temperature | Specific Heat of Hfc
deg K cal/gK
60 0.011
95 0.020
300 0.045
600 0.065
1000 0.065
3000 0.065

Table lookup will be used to fit the Specific Heat data.

Temperature | Emittance
deg K
300 1.00
1100 0.98
1900 0.90
2500 0.70
2900 0.62

The above data is represented by the approximating function
e(T) = .8 — .2 tanh((T — 2100),/1000).

We use the above data to construct empirical relations to represent the constants in the above
system of coupled partial differential equations.The Appendix A contains graphical output from

the computer analysis of the heat transfer in a porous media.
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APPENDIX A
GRAPHICAL REPRESENTATION OF RESULTS

Solution of the coupled equations describing flow of gas through a porous media. The

input power in Kw is assumed to be a cosine curve of the form
R
Q(R) = 40. cos(%—).

Solution of coupled equations is by ADI (Alternating Direction Implicit) technique.
All dimensions have been normalized. The radial and axial directions range from 0 to 1.

The temperatures of the gas (V) and solid (U) have been normalized by the equations
U=TS/TGO V =TG/TGO

where TG0 = 300 K.
The figures Al throug A16 illustrate the temperature change for the gas and solid as
a function of the normalized time
tu

T=-—

L

where ¢ is real time, u is velocity, and L is length in the axial direction.
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Figure Al. Normalized Gas Temperature at 7 = 1.0
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Figure A2. Normalized Gas Temperature at 7 = 2.0
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Figure A3. Normalized Gas Temperature at r = 3.0
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[ESTFERA TURE

Figure A5. Normalized Gas Temperature at 7 = 5.0
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10.0

Figure A6. Normalized Gas Temperature at 7
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T =20.0

Figure AT. Normalized Gas Temperature at
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Figure A8. Normalized Gas Temperature at 7 = 30.0
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Figure A10. Normalized Solid Temperature at 7 = 2.0
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T=3.0

Figure A1l. Normalized Solid Temperature at
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Figure A12. Normalized Solid Temperature at 7 = 4.0

46



[ENFERATURNE

Figure A13. Normalized Solid Temperature at r = 5.0
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Figure A14. Normalized Solid Temperature at 7
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30.0

Figure A16. Normalized Solid Temperature at 7
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